윈디하나의 누리사랑방. 이런 저런 얘기
Product Code name CUDA FP16 FP32 FP64 FP32향상비율
----------- ------------ ---- ------------- ----------- -------------- -----------
8600 Tesla 1.1 x 92.80G x
9600 x 278.4G x 3.00
260 1.3 x 476.9G 59.62G (1:8) 1.71
460 Fermi 2.1 x 907.2G 75.60G (1:12) 1.90
560 x 1,089G 90.72G (1:12) 2.28
660 Kepler 3.0 x 1.981T 82.56G (1:24) 1.82
760 x 2.378T 99.07G (1:24) 1.20
960 Maxwell 5.2 x 2.413T 75.39G (1:32) 1.01
1060 6G Pascal 6.1 68.36G (1:64) 4.375T 136.7G (1:32) 1.81
1660 Turing 7.5 10.05T (2:1) 5.027T 157.1G (1:32) -
2060 12G 14.36T (2:1) 7.181T 224.4G (1:32) 1.64
3060 12G Ampere 8.6 12.74T 12.74T 199.0G (1:64) 1.77
4060 Ada Lovelace 8.9 15.11T 15.11T 236.2G (1:64) 1.18
5060 Blackwell 10.1 23.22T 23.22T 362.9G (1:64) 1.47 (예상치)
참고
3060 Ti Ampere 8.6 16.20T 16.20T 253.1G (1:64)
4060 Ti 16G Ada Lovelace 8.9 22.06T 22.06T 344.8G (1:64) 1.36
3070 8.6 20.31T 20.31T 317.4G (1:64)
4070 8.9 29.15T 29.15T 455.4G (1:64) 1.43
Stable Diffusion - SD 2.1 Replicant-V1.0 사진 #2
미세조정 중. 일부 키워드는 아예 먹히지 않는게 있다. 그래도 맘에 드는거 5장 추려서 올린다.
요즘에 사용하는 이미지 생성 방식은, 960 x 540 또는 540 x 960 크기의 그림을 스텝 20 정도로 100장 이상 배치로 생성한 후, 그중에 맘에 드는 구도가 있으면 동일한 설정으로 2배 스케일링 해서 뽑는다. 지금 사용하는건 스케일링 모델은 "R-ESRGAN General 4xV3" 인데, 나름 괜찮다. 스케일링하다가 심하게 깨지면 Denoising strength 를 0.5 이하로 줄여서 (기본값은 0.7이다) 다시 해보면 거의 원본대로 확대된다.
이미지의 메타 태그를 읽으면 프롬프트를 볼 수 있다.